Title
Finding optimal neural networks for land use classification
Abstract
In this letter we present a fully automatic and computationally efficient algorithmbased on the Minimum Description Length Principle (MDL) for optimizing multilayer perceptronclassifiers. We demonstrate our method on the problem of multispectral Landsatimage classification. We compare our results with a hand designed multi-layer perceptronand a Gaussian maximum likelihood classifier where our method produces betterclassification accuracy with a smaller number of hidden units.1...
Year
DOI
Venue
1998
10.1109/36.655348
IEEE T. Geoscience and Remote Sensing
Keywords
Field
DocType
geophysical signal processing,geophysical techniques,geophysics computing,image classification,multilayer perceptrons,optimisation,remote sensing,accuracy,classifier,computationally efficient algorithm,geophysical measurement technique,image classification,land surface,land use,minimum description length,multidimensional image processing,multilayer perceptron,multispectral Landsat image,multispectral remote sensing,neural net,optimal neural network,optimization,terrain mapping
Computer vision,Remote sensing,Minimum description length,Multispectral image,Gaussian,Multilayer perceptron,Artificial intelligence,Multispectral pattern recognition,Classifier (linguistics),Artificial neural network,Contextual image classification,Mathematics
Journal
Volume
Issue
ISSN
36
1
0196-2892
Citations 
PageRank 
References 
11
2.20
10
Authors
2
Name
Order
Citations
PageRank
Horst Bischof18751541.43
Ales Leonardis21636147.33