Title
On the asymptotic distribution of the least-squares estimators in unidentifiable models.
Abstract
In order to analyze the stochastic property of multilayered perceptrons or other learning machines, we deal with simpler models and derive the asymptotic distribution of the least-squares estimators of their parameters. In the case where a model is unidentified, we show different results from traditional linear models: the well-known property of asymptotic normality never holds for the estimates of redundant parameters.
Year
DOI
Venue
2004
10.1162/08997660460734010
Neural Computation
Keywords
DocType
Volume
asymptotic normality,well-known property,learning machine,simpler model,unidentifiable model,asymptotic distribution,redundant parameter,least-squares estimator,stochastic property,multilayered perceptrons,different result
Journal
16
Issue
ISSN
Citations 
1
0899-7667
6
PageRank 
References 
Authors
0.61
9
3
Name
Order
Citations
PageRank
Taichi Hayasaka1946.83
Masashi Kitahara2131.48
Shiro Usui3775198.35