Abstract | ||
---|---|---|
Compressed sensing (CS) is on recovery of high dimensional signals from their low dimensional linear measurements under a sparsity prior and digital quantization of the measurement data is inevitable in practical implementation of CS algorithms. In the existing literature, the quantization error is modeled typically as additive noise and the multi-bit and 1-bit quantized CS problems are dealt with separately using different treatments and procedures. In this paper, a novel variational Bayesian inference based CS algorithm is presented, which unifies the multi- and 1-bit CS processing and is applicable to various cases of noiseless/noisy environment and unsaturated/saturated quantizer. By decoupling the quantization error from the measurement noise, the quantization error is modeled as a random variable and estimated jointly with the signal being recovered. Such a novel characterization of the quantization error results in superior performance of the algorithm which is demonstrated by extensive simulations in comparison with state-of-the-art methods for both multi-bit and 1-bit CS problems. |
Year | DOI | Venue |
---|---|---|
2013 | 10.1109/TSP.2013.2256901 | IEEE Transactions on Signal Processing |
Keywords | DocType | Volume |
variational bayesian inference based cs algorithm,variational bayesian algorithm,belief networks,cs algorithms,quantized compressed sensing,1-bit cs processing,quantization error decoupling,variational message passing,quantisation (signal),unified framework,noisy environment,unsaturated quantizer,sparse bayesian learning,low dimensional linear measurements,multibit cs processing,compressed sensing,bayes methods,noise measurement,noiseless environment,measurement data,sparsity prior,digital quantization,1-bit compressed sensing,measurement noise,high dimensional signals,additive noise | Journal | 61 |
Issue | ISSN | Citations |
11 | 1053-587X | 13 |
PageRank | References | Authors |
0.61 | 20 | 3 |
Name | Order | Citations | PageRank |
---|---|---|---|
Zai Yang | 1 | 536 | 26.78 |
Lihua Xie | 2 | 5686 | 405.63 |
Cishen Zhang | 3 | 774 | 68.79 |