Abstract | ||
---|---|---|
A robust variant of invasive weed optimisation IWO algorithm, called enhanced invasive weed optimisation EIWO algorithm, is proposed in this paper for the optimisation of constrained benchmark problems. Enjoying the ecological behaviour of colonising weeds, IWO has demonstrated its ability in solving different optimisation problems. Since making a proper balance between these two components is essential, especially to cope with constraint optimisation problems, two new rules are added to the algorithm to improve its performance. The first rule is utilising principles of social standard deviation as proposed in social harmony search SHS algorithm. The second rule is utilised to prevent the algorithm to get stuck on local optima. Finally, for constraint handling, three simple heuristic rules of Deb are utilised. The robustness and effectiveness of the proposed method are tested on many constrained benchmark problems and compared against those of state-of-the-art algorithms. |
Year | DOI | Venue |
---|---|---|
2013 | 10.1504/IJBIC.2013.053505 | IJBIC |
Keywords | Field | DocType |
simple heuristic rule,constraint optimisation problem,new rule,constraint handling,state-of-the-art algorithm,different optimisation problem,colonising weed,benchmark problem,robust function optimisation,invasive weed,harmony search,standard deviation | Heuristic,Mathematical optimization,Local optimum,Robustness (computer science),Artificial intelligence,Harmony search,Standard deviation,Machine learning,Mathematics | Journal |
Volume | Issue | ISSN |
5 | 2 | 1758-0366 |
Citations | PageRank | References |
3 | 0.37 | 31 |
Authors | ||
3 |
Name | Order | Citations | PageRank |
---|---|---|---|
Pezhman Ramezani | 1 | 20 | 1.64 |
Milad Ahangaran | 2 | 4 | 0.72 |
Xin-She Yang | 3 | 5433 | 241.09 |