Title
The Self-Adaptive Adjustment Method Of Clustering Center In Multi-Spectral Remote Sensing Image Classification Of Land Use
Abstract
As one kind of remote sensing images of land use composed by various categories of surface objects difficult to obtain multi-distribution model of class spectral feature, analyzing the spectral characteristics of LU of multispectral RS imagery, this paper presents a self-adaptive adjustment of clustering center method. Depending on the intercepted situation of the cluster centers between different features to conduct split, the sub-centers obtained are as the sub-category features and the cluster centers assemble to characterize category model which is better to deal with the problems of LU category composed by various surface objects and category model not satisfying multivariate normal distribution. As there are much differences between the many centers features in the unit of category area, so the selection of training area and the determinants of rules are easy. The results of experiment indicate that the LU classification accuracy is increased between 4% and 6% with this method.
Year
DOI
Venue
2011
10.1007/978-3-642-27278-3_57
COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE V, PT II
Keywords
Field
DocType
Multispectral remote sensing imagery, land use classification
Data mining,Computer science,Remote sensing,Multispectral image,Multivariate normal distribution,Cluster analysis,Contextual image classification,Multi spectral,Land use
Conference
Volume
Issue
ISSN
369
PART 2
1868-4238
Citations 
PageRank 
References 
0
0.34
1
Authors
7
Name
Order
Citations
PageRank
ShuJing Wan111.33
Chengming Zhang2107.49
Jiping Liu3116.00
Yong Wang401.35
Hui Tian500.34
Yong Liang637.52
Jing Chen700.34