Title
A Novel Approach For Learning How To Automatically Match Job Offers And Candidate Profiles
Abstract
Automatic matching of job offers and job candidates is a major problem for a number of organizations and job applicants that if it were successfully addressed could have a positive impact in many countries around the world. In this context, it is widely accepted that semi-automatic matching algorithms between job and candidate profiles would provide a vital technology for making the recruitment processes faster, more accurate and transparent. In this work, we present our research towards achieving a realistic matching approach for satisfactorily addressing this challenge. This novel approach relies on a matching learning solution aiming to learn from past solved cases in order to accurately predict the results in new situations. An empirical study shows us that our approach is able to beat solutions with no learning capabilities by a wide margin.
Year
DOI
Venue
2016
10.1007/s10796-019-09929-7
INFORMATION SYSTEMS FRONTIERS
Keywords
Field
DocType
Human resources management systems, Knowledge engineering, e-Recruitment
Job analysis,Computer science,Theoretical computer science,Artificial intelligence,Empirical research,Management science,Machine learning
Journal
Volume
Issue
ISSN
22
6
1387-3326
Citations 
PageRank 
References 
0
0.34
0
Authors
3
Name
Order
Citations
PageRank
Jorge Martínez Gil101.01
Alejandra Lorena Paoletti2203.18
Mario Pichler317310.53