Title
Discovering web services in social web service repositories using deep variational autoencoders
Abstract
•We explore the use of Variational Autoencoders for syntactic Web Service discovery.•We evaluate our approach using a 17113-service dataset, the largest among the research community.•Our approach outperforms service engines based on traditional dimensionality reduction techniques (LSA, LDA).•Our approach outperforms service engines based on Word Embeddings.•Average query processing times and VAE training times confirm that our approach is viable in practice.
Year
DOI
Venue
2020
10.1016/j.ipm.2020.102231
Information Processing & Management
Keywords
DocType
Volume
Service-oriented computing,Web Services,Service discovery,Deep neural network,Variational autoencoder
Journal
57
Issue
ISSN
Citations 
4
0306-4573
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Ignacio Lizarralde121.37
Cristian Mateos243043.09
Alejandro Zunino363853.15
Tim A. Majchrzak423130.59
Tor-Morten Grønli58123.80