Abstract | ||
---|---|---|
Let
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Bbb F_{q}$ </tex-math></inline-formula>
be a finite field with
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>
elements and
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>
be a prime with
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gcd (p,q)=1$ </tex-math></inline-formula>
. Let
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>
be a finite abelian
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>
-group and
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Bbb F_{q}(G)$ </tex-math></inline-formula>
be a group algebra. In this paper, we find all primitive idempotents and minimal abelian group codes in the group algebra
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Bbb F_{q}(G)$ </tex-math></inline-formula>
. Furthermore, we give all LCD abelian codes (linear code with complementary dual) and self-orthogonal abelian codes of
<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Bbb F_{q}(G)$ </tex-math></inline-formula>
. |
Year | DOI | Venue |
---|---|---|
2020 | 10.1109/TIT.2019.2923758 | IEEE Transactions on Information Theory |
Keywords | DocType | Volume |
Liquid crystal displays,Algebra,Linear codes,Cryptography,Hamming distance,Indexes | Journal | 66 |
Issue | ISSN | Citations |
5 | 0018-9448 | 0 |
PageRank | References | Authors |
0.34 | 0 | 3 |
Name | Order | Citations | PageRank |
---|---|---|---|
Fengwei Li | 1 | 105 | 13.73 |
Qin Yue | 2 | 192 | 21.13 |
Yansheng Wu | 3 | 15 | 10.07 |