Abstract | ||
---|---|---|
In this paper, we firstly present a dataset (X4K1000FPS) of 4K videos of 1000 fps with the extreme motion to the research community for video frame interpolation (VFI), and propose an extreme VFI network, called XVFI-Net, that first handles the VFI for 4K videos with large motion. The XVFI-Net is based on a recursive multi-scale shared structure that consists of two cascaded modules for bidirectional optical flow learning between two input frames (BiOF-I) and for bidirectional optical flow learning from target to input frames (BiOF-T). The optical flows are stably approximated by a complementary flow reversal (CFR) proposed in BiOF-T module. During inference, the BiOF-I module can start at any scale of input while the BiOF-T module only operates at the original input scale so that the inference can be accelerated while maintaining highly accurate VFI performance. Extensive experimental results show that our XVFI-Net can successfully capture the essential information of objects with extremely large motions and complex textures while the state-of-the-art methods exhibit poor performance. Furthermore, our XVFI-Net framework also performs comparably on the previous lower resolution benchmark dataset, which shows a robustness of our algorithm as well. All source codes, pre-trained models, and proposed X4K1000FPS datasets are publicly available at https://github.com/JihyongOh/XVFI. |
Year | DOI | Venue |
---|---|---|
2021 | 10.1109/ICCV48922.2021.01422 | ICCV |
DocType | Citations | PageRank |
Conference | 0 | 0.34 |
References | Authors | |
0 | 3 |
Name | Order | Citations | PageRank |
---|---|---|---|
Hyeonjun Sim | 1 | 0 | 0.34 |
Jihyong Oh | 2 | 0 | 0.34 |
Munchurl Kim | 3 | 0 | 0.68 |