Title
Accounting for Language Effect in the Evaluation of Cross-lingual AMR Parsers.
Abstract
Cross-lingual Abstract Meaning Representation (AMR) parsers are currently evaluated in comparison to gold English AMRs, despite parsing a language other than English, due to the lack of multilingual AMR evaluation metrics. This evaluation practice is problematic because of the established effect of source language on AMR structure. In this work, we present three multilingual adaptations of monolingual AMR evaluation metrics and compare the performance of these metrics to sentence-level human judgments. We then use our most highly correlated metric to evaluate the output of state-of-the-art cross-lingual AMR parsers, finding that Smatch may still be a useful metric in comparison to gold English AMRs, while our multilingual adaptation of S2match (XS2match) is best for comparison with gold in-language AMRs.
Year
Venue
DocType
2022
International Conference on Computational Linguistics
Conference
Volume
Citations 
PageRank 
Proceedings of the 29th International Conference on Computational Linguistics
0
0.34
References 
Authors
0
2
Name
Order
Citations
PageRank
Shira Wein100.34
Nathan Schneider2131970.25