Title
Analytical approach to massively parallel architectures for nanotechnologies
Abstract
In the emerging field of single-chip multiprocessors (CMP) analytical models of performance and power consumption are necessary for design space exploration and the analysis of existing architectures. In the light of ever decreasing structure sizes in microchips the scalability of proposed CMPs is of great interest to the developers. Looking even further into the future at the possibilities offered by, e. g., nanotechnology, a set of such models may help to identify promising architectures and possible bottlenecks even before the enabling technologies exist. In this paper, we present our current work in this area in the form of two models. The first and very basic model is based on Amdahl驴s law and gives a first promising outlook on chip multiprocessing. Based on the more complex BSP model our second model takes the on-chip communication into account and thus allows a much more detailed look at the architecture. In both cases, basic laws of circuit technology have been combined with the underlying models that now take the effects of device scaling into account. Later we will also present the GigaNetIC 1 architecture, a CMP developed by our research group. It will then be analyzed by applying the BSP-based model.
Year
DOI
Venue
2005
10.1109/ASAP.2005.14
ASAP
Keywords
Field
DocType
complex bsp model,analytical approach,basic model,analytical model,promising outlook,promising architecture,parallel architecture,circuit technology,basic law,chip multiprocessing,underlying model,bsp-based model,system on chip,microchip,chip,space technology,circuits,nanotechnology,amdahl law,system on a chip,space exploration,cmos technology
Architecture,Computer architecture,System on a chip,Amdahl's law,Computer science,Massively parallel,Parallel computing,Multiprocessing,Design space exploration,Scaling,Scalability
Conference
ISSN
ISBN
Citations 
2160-0511
0-7695-2407-9
2
PageRank 
References 
Authors
0.42
13
3
Name
Order
Citations
PageRank
Bjorn Jager120.42
Jorg Christian Niemann2636.65
Ulrich Ruckert3717.70